Unit 1: Java
e

Java - Introduction

m Java ls:

— platform independent programming
language

— similar to C++ In syntax
— similar to Smalltalk in mental paradigm

m Pros: also ubiquitous to net

m Cons: interpreted, and still under
B development (moving target)

Java - Application

m Java has some interesting features:
— automatic type checking,
— automatic garbage collection,

— simplifies pointers; no directly accessible
pointer to memory,

— simplified network access,
— multi-threading!

How It works...!

Compile-time Environment

Class
Loader «— Java
Class
Bytecode Libraries
Verifier
/ = \\
Java Justin
Java Interpreter Time
Bytecodes Compiler | Java
move locally Virtual
or through machine

Java network
Compiler

Runtime System

|

Java Operating System
Bytecode l

(.class)

Hardware

How It works...!

m Java is independent only for one reason:

— Only depends on the Java Virtual Machine
(JVM),

— code is compiled to bytecode, which is
Interpreted by the resident JVM,

— JIT (just in time) compilers attempt to
Increase speed.

Java - Security

m Pointer denial - reduces chances of
virulent programs corrupting host,

m Applets even more restricted -

— May not
 run local executables,
» Read or write to local file system,

« Communicate with any server other than the
originating server.

Object-Oriented

m Java supports OOD
— Polymorphism
— Inheritance
— Encapsulation
m Java programs contain nothing but
definitions and instantiations of classes
o — Everything is encapsulated in a class!

Java Advantages

Portable - Write Once, Run Anywhere
Security has been well thought through
Robust memory management

Designed for network programming
Multi-threaded (multiple simultaneous tasks)

Dynamic & extensible (loads of libraries)
— Classes stored in separate files
— Loaded only when needed

Basic Java Syntax

Primitive Types and Variables

boolean, char, byte, short, int, long, float, double etc.

These basic (or primitive) types are the only types
that are not objects (due to performance issues).

®m This means that you don’t use the new operator to
create a primitive variable.

Declaring primitive variables:

Initialisation

m If no value iIs assigned prior to use, then the
compiler will give an error

m Java sets primitive variables to zero or false
INn the case of a boolean variable

m All object references are initially set to null
= An array of anything Is an object

— Set to null on declaration

— Elements to zero false or null on creation

Declarations

Int index = 1.2; /[compliler error
boolean retOk = 1; /[compliler error
double fiveFourths =5/4; // no error!
float ratio = 5.8f; /[correct

double fiveFourths = 5.0/ 4.0: /| correct

m 1.2fis a float value accurate to 7 decimal places.
m 1.2 is a double value accurate to 15 decimal places.

